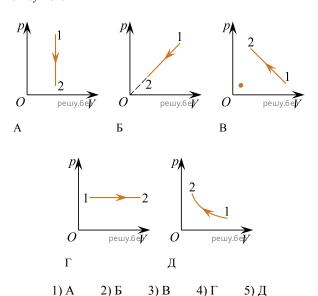

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Из перечисленного ниже к физическому явлению относится:
- 1) движение 2) мензурка 3) масса 4) скрепка 5) время
- **2.** На рисунке представлен график зависимости координаты x материальной точки, движущейся вдоль оси Ox, от времени t. Верными утверждениями являются:


- 1) модуль скорости материальной точки на промежутке времени от 0 с до 4 с равен 2,5 $\,$ м/с;
- 2) модуль скорости материальной точки на промежутке времени от 4 с до 8 с равен 5 $\,$ м/с;
- 3) в момент времени t=4 с координата x материальной точки равна 40 м;
- 4) в момент времени t=3 с координата x материальной точки равна 50 м;
- 5) за первые 4 с движения координата материальной точки уменьшилась на $30~\mathrm{M}$.
- 3. Небольшое тело скользит по гладкой поверхности горки в вертикальной плоскости. Зависимость высоты h точек поверхности горки от координаты х показана на рисунке. Нулевой уровень потенциальной энергии совпадает с горизонтальной осью Ox. Если в точке Aпотенциальная энергия тела была в два раза больше его кинетической энергии, то точки, в которые тело не может переместиться точки A, обозначены цифрами:

1) 1 2) 2 3) 3 4) 4 5) 5

- **4.** В некотором процессе идеальному газу, количество вещества которого постоянно, сообщили количество теплоты Q > 0. Если при этом газ совершил работу A = Q то данный процесс является:
 - 1) изотермическим сжатием 2) изобарным сжатием

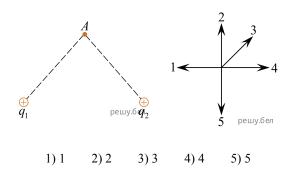
- 3) изотермическим расширением 4) изохорным нагреванием 5) изохорным охлаждением
- 5. Изотермическому сжатию идеального газа, количество вещества которого постоянно, в координатах (р, V) соответствует график, показанный на рисунке, обозначенном буквой:

6. Установите соответствие между физической величиной и её характеристикой

4) Γ

5) Д

1) A


2) Б

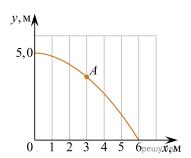
Физическая величина	Характеристика фи- зической величины
А. Электроёмкость	1) векторная вели-
Б. Потенциал электростатиче-	чина
ского поля	2) скалярная вели-
В. Индукция магнитного поля	чина

7. Правильное соотношение между работой A, совершённой электрическими силами по переносу заряда q на участке цепи, и напряжением U на этом участке цепи указано под номером:

1)
$$A = \frac{U^2}{q}$$
 2) $A = \frac{q}{U}$ 3) $A = \frac{U}{q}$ 4) $A = qU$ 5) $A = \frac{q^2}{U}$

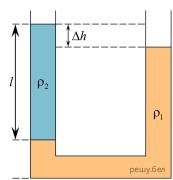
8. Электростатическое поле в точке A создаётся двумя равноудалёнными от неё одинаковыми положительными точечными зарядами $q_1 = q_2$. Направление результирующей напряжённости электростатического поля в точке A показано на рисунке стрелкой под номером:

- 9. Если предмет находится перед плоским зеркалом на расстоянии 10 см от него, то расстояние между предметом и его изображением в зеркале равно:
 - 1) 5,0 см
- 2) 10 см
- 3) 20 см
- 4) 30 см
- 5) 40 см


10. Луч света переходит из оптически менее плотной среды в оптически более плотную среду. Если угол падения луча $\alpha=44^\circ$, то для угла преломления β луча на границе раздела этих сред выполняется условие:

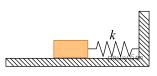
- 1) $\beta = 44^{\circ}$
- 2) $\beta < 44^{\circ}$
- 3) $\beta > 44^{\circ}$
- 4) $\beta = 0^{\circ}$
- 5) $\beta = 90^{\circ}$

11. В парке культуры и отдыха установлен аттракцион, в котором кабинки с посетителями движутся по окружности радиусом R в горизонтальной плоскости с угловой скоростью $\omega = 0,40$ рад/с. Если модуль центростремительного ускорения посетителей в кабинках аттракциона a = 0,88 м/с², то радиус R окружности равен ... дм.


12. Тело бросили горизонтально с высоты h=5,0 м (см. рис.). В точке A модуль мгновенной скорости v тела равен ... дм/с

Ответ запишите в дециметрах за секунду, округлив до целых.

13. Автомобиль трогается с места и, двигаясь равноускорено и прямолинейно, проходит по горизонтальному участку шоссе путь $s=20.0\,$ м за промежуток времени $\Delta t=2.00\,$ с. Если масса автомобиля $m=1.00\,$ т, то его кинетическая энергия $E_{\bf k}$ в конце пути равна ... кДж.


14. В одинаковые сообщающиеся сосуды налили воду $\left(\rho_1=1000\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$. Поверх воды в один из сосудов наливают неизвестную жидкость, не смешивающуюся с водой (см. рис.). Уровень поверхности воды ниже уровня поверхности неизвестной жидкости на $|\Delta h|=1,0$ см. Если длина столба неизвестной жидкости l=10,0 см, то плотность этой жидкости ρ_2 равна ... $\mathrm{K}\Gamma/\mathrm{M}^3$.

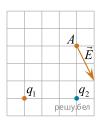
15. Шарик массой m=88 г, находящийся на вращающемся гладком горизонтальном диске, соединён лёгкой пружиной с вертикальной осью вращения, проходящей через центр диска (см. рис.). Шарик обращается вокруг этой оси с угловой скоростью $\omega=5.0$ рад/с. Если удлинение пружины $\Delta l=2.0$ см, а расстояние от оси вращения до центра шарика l=20 см, то жёсткость пружины равна ... H/M.

16. Плита массой m=120 кг была равномерно поднята с помощью подъемного механизма на высоту h=16,0 м за промежуток времени $\Delta t=30,0$ с. Если коэффициент полезного действия 80%. то мощность, развиваемая двигателем, равна ... Вт.

17. Горизонтальный пружинный маятник (см. рис.) совершает свободные гармонические колебания с амплитудой A=2,0 см. Если жёсткость пружины k=165 H/м, то максимальная кинетическая энергия $(W_{\rm k})_{\rm max}$ маятника равна ... мДж.

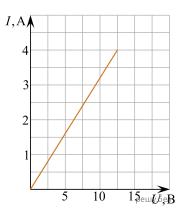
18. В баллоне вместимостью V=10,0 л находится v=1,00 моль идеального газа. Если средняя кинетическая энергия поступательного движения частиц газа $\langle E_k \rangle = 8,00 \cdot 10^{-21}$ Дж, то давление p_1 газа в баллоне равно ... кПа.

Ответ запишите в килопаскалях, округлив до целых.

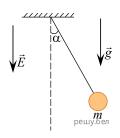

- **19.** При изотермическом сжатии идеального газа, количество вещества которого постоянно, его давление изменилось от $p_1=150$ кПа до $p_2=180$ кПа. Если конечный объём газа $V_2=50$ л, в его начальный объём V_1 был равен ... л
- **20.** В баллон вместимостью $V=400~{\rm cm}^3$ при постоянной температуре закачивают воздух насосом, вместимость камеры которого $V_0=35,0~{\rm cm}^3$. Начальное давление в баллоне было равно атмосферному давлению $p_0=100~{\rm k}\Pi$ а. Когда совершили n=32 качания, давление p в баллоне стала. равным ... к Π а.
- 21. На рисунке представлена зависимость температуры t тела от времени t. Удельная теплоем-кость вещества тела в твёрдом состоянии $c = 1,50 \frac{\text{к} \text{Дж}}{\text{кг} \cdot {}^{\circ}\text{C}}$.

 $t_{\text{nii}} + 20^{\circ}\text{C}$ $t_{\text{nii}} + 20^{\circ}\text{C}$ $t_{\text{nii}} - 40^{\circ}\text{C}$

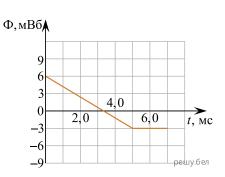
 $K\Gamma \cdot {}^{\circ}C$ Если мощность нагревателя постоянна, а теплообмен с окружающей


средой не учитывать, то удельная теплота плавления λ вещества равна ... $\frac{\kappa Д \kappa}{\kappa \Gamma}$

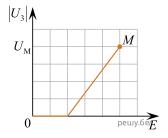
- **22.** При изобарном нагревании внутренняя энергия идеального одноатомного газа, количество вещества которого постоянно, увеличилась на $\Delta U_1=180~\rm Дж$. Затем газу изотермически сообщили количество теплоты $Q_2=200~\rm Дж$. В результате двух процессов силой давления газа была совершена работа A, равная ... Дж.
- **23.** Если в точке A модуль результирующей напряжённости электростатического поля, созданного точечными зарядами q_1 и q_2 , E=50 В/см, то модуль напряжённости E_2 электростатического поля, создаваемого в точке A (см. рис.) зарядом q_2 , равен ... В/см.


Ответ запишите в вольтах на сантиметр, округлив до целых.

- **24.** Два неподвижных точечных заряда, находящихся в воздухе ($\varepsilon_1=1,0$), взаимодействуют с силой, модуль которой $F_1=15$ мН. Если эти заряды поместить в жидкий диэлектрик ($\varepsilon_2=2,5$) и расстояние между ними уменьшить в n=2,0 раза, то модуль силы F_2 взаимодействия зарядов в диэлектрике станет равным ... мН.
- **25.** Проводник, вольт-амперная характеристика которого показана на рисунке, и резистор соединены последовательно и подключены к источнику постоянного тока. Если сопротивление резистора R=5,0 Ом, а сила тока в цепи I=2,5 А, то напряжение U на клеммах источника тока равно ... В.


26. При коротком замыкании сила тока в аккумуляторе $I_{\rm K,3}=30~{\rm A}$. Если внутреннее сопротивление аккумулятора $r=0,80~{\rm Om},$ то электродвижущая сила $\mathscr E$ аккумулятора равна ... В

27. Маленький шарик массой m=10 г , имеющий заряд q=1,0 мкКл, непроводящей невесомой нерастяжимой нити длиной l=11 см и помещён в однородное вертикальное электростатическое поле, модуль напряжённости которого E=200 кВ/м (см. рис.). Если нить с шариком отвести на угол $\alpha=30^\circ$ от вертикали и отпустить без начальной скорости, то модуль максимальной скорости v $_{\rm max}$ шарика в процессе движения будет равен ... см/с.



Ответ запишите в сантиметрах за секунду, округлив до целых.

28. На рисунке представлен график зависимости магнитного потока Ф через поверхность, ограниченную проволочной рамкой, от времени t. Если сопротивление проволоки, из которой изготовлена рамка, R=0,30 Ом, то модуль заряда |q|, который проходит через поперечное сечение проволоки от момента времени $t_0=0$ мс до момента времени t=7,0 мс; равен ... мКл.

29. На рисунке представлен график зависимости модуля задерживающего напряжения $|U_3|$ на фотоэлементе от энергии E фотонов, падающих на фотокатод. Если задерживающее напряжение $U_{\rm M}$ получено при энергии фотонов E=5 эВ, то максимальная кинетическая энергия $E_{\rm K}^{\rm max}$ электронов, покидающих поверхность фотокатода, равна ... эВ.

30. Период полураспада радиоактивного изотопа полония $^{210}_{84}Po$ равен $T_{1/2}=138$ сут. Если начальная масса изотопа полония m_0 =968 мг, то через промежуток времени $\Delta t=414$ сут масса m нераспавшегося изотопа полония будет равна ... мг.